G

Open-Source
AI testing library

Automatically run exhaustive test suites to identify risks on your ML models and LLMs.
Get started
import giskard
from
langchain import chains, prompts

llm = ...
prompt = prompts.PromptTemplate(       input_variables=[
"product"],       template="..."
)
chain = chains.LLMChain(
   llm=llm,
   prompt=prompt
)


# Wrap your Pandas DataFrame and model
dataset = giskard.Dataset(df, ...)
model = giskard.Model(chain, ...)


# Scan for vulnerabilities
results = giskard.scan(model, dataset)
Copy to clipboard
import giskard
from
transformers import AutoTokenizer
from
transformers import TFAutoModel

tk = AutoTokenizer.from_pretrained(...)
hf = TFAutoModel.from_pretrained(...)


# Pipeline for the model prediction
def pred_func(df):    
    return
softmax(hf(**tk(...).logits))

# Wrap your Pandas DataFrame and model
dataset = giskard.Dataset(df=text_df, ...)
model = giskard.Model(model=pred_func, ...)

# Scan for vulnerabilities
results = giskard.scan(model, dataset)
Copy to clipboard
import giskard
from torchtext.models
import
XLMR_BASE_ENCODER

model = XLMR_BASE_ENCODER.get_model(head=h)

# Pipeline for the model prediction
def pred_func(df):    
    
output_df = DataLoader(df.map(T))       return [model(i) for i in output_df]

# Wrap your Pandas DataFrame and model
dataset = giskard.Dataset(df=text_df, ...)
model = giskard.Model(model=pred_func, ...)

# Scan for vulnerabilities
results = giskard.scan(model, dataset)
Copy to clipboard
import giskard

model = ... # tensorflow model

# Define a custom wrapper
class MyTensorFlowModel(giskard.Model):       def model_predict(self, df):
       return
self.model.predict(
           pipeline.transform(df))

# Wrap your Pandas DataFrame and model
dataset = giskard.Dataset(df, ...)
model = MyTensorFlowModel(model, ...)

# Scan for vulnerabilities
results = giskard.scan(model, dataset)
Copy to clipboard
import giskard
from
sklearn.pipeline import Pipeline

# Pipeline for the sklearn model
clf = Pipeline(...)
clf.fit(...)


# Wrap your Pandas DataFrame
dataset = giskard.Dataset(
  df=titanic_df, target=
"Survived"
)

# Wrap your model
model = giskard.Model(
  model=clf.predict_proba,
  model_type=
"classification"
)

# Scan for vulnerabilities
results = giskard.scan(model, dataset)
Copy to clipboard
import giskard, requests

def pred_func(input_data):    
    
# Set up the API endpoint URL
   
api = "https://api.example.com/predict"
    # Send GET request to API & get     response
    response = requests.get(
    api, params={
"input": input_data}
   )

    
# Extract predictions from JSON     response
    return
...

# Wrap your Pandas DataFrame and model dataset = giskard.Dataset(df, ...)
model = giskard.Model(pred_func,   ...)


# Scan for vulnerabilities
results = giskard.scan(model, dataset)
Copy to clipboard

Product workflow

Deliver AI products, better & faster. Become an AI superhero.
Get started

Scan

Automatically identify the risks of AI models.

Test

Run tests to protect against risks of regressions.

Automate

Automatically publish reports in your CI/CD pipeline.

Detect critical risks in AI systems, before production

Hallucination and Misinformation

Safeguard against non-factual outputs, preserving accuracy.

Harmful Content Generation

Ensure models steer clear of malicious or harmful response.

Prompt Injection

Guard against LLM manipulations that bypass filters or override model instructions.

Information disclosure

Guarantee user privacy, ensuring LLMs doesn't divulge sensitive data.

Robustness

Detect when model outputs are sensitive to small perturbations in the input data.

Stereotypes & Discrimination

Avoid model outputs that perpetuate biases, stereotypes, or discriminatory content.

Performance bias

Identify discrepancies in accuracy, precision, recall, or other evaluation metrics on specific data slices.

Unrobustness

Detect when your model is sensitive to small perturbations in the input data.

Overconfidence

Avoid incorrect predictions when your model is overly confident.

Stochasticity

Detect inherent randomness in your model and avoid variations in your results.

Data leakage

Detect inflated performance metrics and inaccuracy due to unintentional external data used in your model.

Unethical behavior

Identify perturbations in your model behavior when switching input data (gender, ethnicity...).

Integrates with your favorite Machine Learning tools

scikit-learn
Kubernetes
Huggingface

Test your LLM application

Go beyond generic benchmarks
Generate automated tests for precise & contextual assessments, from RAG to chatbots.
GET STARTED

Automate your RAG
Agent evaluation

Generate realistic test cases automatically to detect weaknesses and evaluate answer correctness across your RAG agent components.

Streamline ML testing for tabular models

Detect vulnerabilities and run test suites, directly in your environment. Get your models production-ready in no time.

import giskard

sk_model, df = giskard.demo.titanic()
dataset = giskard.
Dataset(df, target="Survived")
model = giskard.
Model(sk_model,
  model_type=
"classification")
giskard.
scan(model, dataset)
Copy to clipboard

Automate AI tests in your CI/CD pipeline

Automatically generate a test suite based on detected vulnerabilities, and integrate it directly in your CI/CD pipeline.
DOCUMENTATION

Gain more capabilities with Giskard Enterprise

Collaborative Hub to control all AI risks in one place & automate compliance, built for Al Quality, Security & Compliance at scale.
DISCOVER

Join the community

Welcome to an inclusive community focused on AI Quality, Security & Compliance! Join us to share best practices, create new tests, and shape the future of AI standards together.

Discord

All those interested in AI Quality, Security & Compliance are welcome!