Articles, tutorials & news on AI Quality, Security & Compliance
The ArGiMi consortium, including Giskard, Artefact and Mistral AI, has won a France 2030 project to develop next-generation French LLMs for businesses. Giskard will lead efforts in AI safety, ensuring model quality, conformity, and security. The project will be open-source ensuring collaboration, and aiming to make AI more reliable, ethical, and accessible across industries.
Giskard's integration with LiteLLM enables developers to test their LLM agents across multiple foundation models. The integration enhances Giskard's core features - LLM Scan for vulnerability assessment and RAGET for RAG evaluation - by allowing them to work with any supported LLM provider: whether you're using major cloud providers like OpenAI and Anthropic, local deployments through Ollama, or open-source models like Mistral.
The EU is establishing an AI liability framework through two key regulations: the Product Liability Directive (PLD), taking effect in 2024, and the proposed AI Liability Directive (AILD). The PLD introduces strict liability for defective AI systems and software, while the AILD addresses negligent use, though its final form remains under debate. Learn in this article the key points of these regulations and how they will impact businesses.
Giskard Vision is a new module in our open-source library designed to assess and improve computer vision models. It offers automated detection of performance issues, biases, and ethical concerns in image classification, object detection, and landmark detection tasks. The article provides a step-by-step guide on how to integrate Giskard Vision into existing workflows, enabling data scientists to enhance the reliability and fairness of their computer vision systems.
Articles, tutorials and latest news on AI Quality, Security & Compliance
Giskard has integrated with NVIDIA NeMo Guardrails to enhance the safety and reliability of LLM-based applications. This integration allows developers to better detect vulnerabilities, automate rail generation, and streamline risk mitigation in LLM systems. By combining Giskard with NeMo Guardrails organizations can address critical challenges in LLM development, including hallucinations, prompt injection and jailbreaks.